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Performance Metrics and Optimization

« How are performance metrics used?
— Sensitivity studies
— System design
— Decision aid for strategic planning
— Adapting system over time
— Detecting instability; avoiding unstable performance
— Evaluating system reliability
— Design of experiments
— Mathematical modeling and parameter estimation
— And on and on....

 Most of above involve optimization

e Claim: Impossible to have a performance metrics
conference w/o seriously considering optimization!



Search and Optimization Algorithms as
Part of Problem Solving

There exist many deterministic and stochastic algorithms
Algorithms are part of the broader solution

Need clear understanding of problem structure, constraints,
data characteristics, political and social context, limits of
algorithms, etc.

“Imagine how much money could be saved if truly
appropriate techniques were applied that go beyond simple
linear programming.” (Z. Michalewicz and D. Fogel, 2000)

— Deeper understanding required to provide truly appropriate
solutions; COTS usually not enough!

Many (most?) real-world implementations involve stochastic
effects



Potpourri of Problems Using Stochastic
Search and Optimization

Minimize the costs of shipping from production facilities to
warehouses

Maximize the probability of detecting an incoming warhead
(vs. decoy) in a missile defense system

Place sensors in manner to maximize useful information

Determine the times to administer a sequence of drugs for
maximum therapeutic effect

Find the best red-yellow-green signal timings in an urban
traffic network

Determine the best schedule for use of laboratory facilities
to serve an organization’s overall interests



Two Fundamental Problems of Interest

Let ® be the domain of allowable values for a vector 0

0 represents a vector of “adjustables”
— 6 may be continuous or discrete (or both)

Two fundamental problems of interest:

Problem 1. Find the value(s) of a vector 6 € ®
that minimize a scalar-valued loss function L(0)

Problem 2. Find the value(s) of 6 € ® that solve the
equation g(6) = 0 for some vector-valued function g(0)

Frequently (but not necessarily) g(6) = oL(8)/00



Three Common Types of Loss Functions

Continuous Discrete/ Discrete
Continuous



Stochastic Search and Optimization

e Focus here Is on stochastic search and optimization:

A. Random noise in input information (e.g., noisy
measurements of L(0))

— and/or —

B. Injected randomness (Monte Carlo) in choice of
algorithm iteration magnitude/direction

 Contrasts with deterministic methods
— E.g., steepest descent, Newton-Raphson, etc.

— Assume perfect information about L(6) (and its gradients)
— Search magnitude/direction deterministic at each iteration

* Injected randomness (B) in search magnitude/direction can
offer benefits in efficiency and robustness

— E.g., Capalbilities for global (vs. local) optimization



Some Popular Stochastic Search and

Optimization Techniques
Random search

Stochastic approximation

— Robbins-Monro and Kiefer-Wolfowitz
— SPSA

— NN backpropagation

— Infinitesimal perturbation analysis

— Recursive least squares

— Many others

Simulated annealing

Genetic algorithms

Evolutionary programs and strategies
Reinforcement learning

Markov chain Monte Carlo (MCMC)
Etc.



Effects of Noise on Simple Optimization Problem
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Example Search Path (2 variables): Steepest
Descent with Noisy and Noise-Free Input
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Example of Noisy Loss Measurements:

Tracking Problem

Consider tracking problem where controller and/or system
depend on design parameters 0

— E.g.: Missile

guidance, robot arm manipulation, attaining

macroeconomic target values, etc.
Aim Is to pick 6 to minimize mean-squared error (MSE):

L(6) =E

In general non

[Hactual output — desired outputHz)

Inear and/or non-Gaussian systems, not

possible to compute L(0)

Get observed

Note that y(0)

= - ||2 =L(0) + noise

— Values of y(0), not L(0), used in optimization of 6

squared error y(0) =|| - ||2 by running system
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Example of Noisy Loss Measurements:
Simulation-Based Optimization

Have credible Monte Carlo simulation of real system

Parameters 0 in simulation have physical meaning in system

— E.g.: 6 1s machine locations in plant layout, timing settings in
traffic control, resource allocation in military operations, etc.

Run simulation to determine best 6 for use in real system

Want to minimize average measure of performance L(0)
— Let y(0) represent one simulation output (y(6) = L(6) + noise)

Inputs _

—>

Monte Carlo
Simulation

y(6) |

Stochastic
optimizer

— +—> 0
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Some Key Properties in Implementation and
Evaluation of Stochastic Algorithms

« Algorithm comparisons via number of evaluations of L(0) or
g(0) (not iterations)

— Function evaluations typically represent major cost
e Curse of dimensionality

— E.g.: If dim(6) = 10, each element of 6 can take on 10 values.

Take 10,000 random samples: Prob(finding one of 500 best 0)
= 0.0005

— Above example would be even much harder with only noisy
function measurements

e Constraints

Limits of numerical comparisons
— Avoid broad claims based on numerical studies
— Best to combine theory and numerical analysis
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Global vs. Local Solutions

« Global methods tend to have following characteristics:
— Inefficient, especially for high-dimensional 6

— Relatively difficult to use (e.g., require very careful selection of
algorithm coefficients)

— Shaky theoretical foundation for global convergence

 Much “hype” with many methods (genetic algorithm [GA]
software advertisements):

— %“...can handle the most complex problems, including
problems unsolvable by any other method.”

— “...uses GAs to solve any optimization problem!”
e But there are some mathematically sound methods

— E.g., restricted settings for GAs, simulated annealing, and
SPSA
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No Free Lunch Theorems

Wolpert and Macready (1997) establish several “No Free

Lunch’

' (NFL) Theorems for optimization

NFL Theorems apply to settings where parameter set »
and set of loss function values are finite, discrete sets

— Relevant for continuous 6 problem when considering digital
computer implementation

— Results are valid for deterministic and stochastic settings

Number of optimization problems—mappings from »- to

set of

NFL T
algorit

0ss values—iIs finite
neorems state, in essence, that no one search

nm IS “best” for all problems
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No Free Lunch Theorems—Basic Formulation

e Suppose that

Ny = number of values of 0

N, = number of values of loss function
 Then

(NL)N" = number of loss functions

 There is a finite (but possibly huge) number of loss
functions

e Basic form of NFL considers average performance over all
loss functions
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lllustration of No Free Lunch Theorems
(Example 1.7 in ISSO)
e Three values of 0, two outcomes for noise free loss L
— Eight possible mappings, hence eight optimization problems

 Mean loss across all problems is same regardless of 6;
entries 1 or 2 in table below represent two possible L
outcomes

ap
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No Free Lunch Theorems (cont’d)

e NFL Theorems state, in essence:

Averaging (uniformly) over all possible
problems (loss functions L), all algorithms
perform equally well

 |n particular, if algorithm 1 performs better than algorithm 2
over some set of problems, then algorithm 2 performs better
than algorithm 1 on another set of problems

Overall relative efficiency of two algorithms
cannot be inferred from a few sample problems

 NFL theorems say nothing about specific algorithms on
specific problems
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Relative Convergence Rates of Deterministic
and Stochastic Optimization

Theoretical analysis based on convergence rates of
iterates O, where k is iteration counter

Let 0" represent optimal value of 0

For deterministic optimization, a standard rate result is:

b, —0*|=0(c*), 0<c <1

Corresponding rate with noisy measurements
1
=0 (kT) : O<AL %

Stochastic rate inherently slower in theory and practice

6y — 6"
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Concluding Remarks

Stochastic search and optimization very widely used

— Handles noise In function evaluations

— Generally better for global optimization

— Broader applicability to “non-nice” problems (robustness)
Some challenges in practical problems

— Noise dramatically affects convergence

— Distinguishing global from local minima not generally easy
— Curse of dimensionality

— Choosing algorithm “tuning coefficients”

Rarely sufficient to use theory for standard deterministic
methods to characterize stochastic methods

“No free lunch” theorems are barrier to exaggerated claims of
power and efficiency of any specific algorithm

Algorithms should be implemented in context: “Better a
rough answer to the right question than an exact answer

to the wrong one” (Lord Kelvin) 20
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Contact Info. and Related Web Sites

 James.spall@jhuapl.edu

o« www.jhuapl.edu/SPSA (Web site on stochastic
approximation algorithm)

« www.Jhuapl.edu/ISSO (Web site on book
Introduction to Stochastic Search and Optimization)
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